Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available November 23, 2025
- 
            Abstract MotivationRecent advancements in natural language processing have highlighted the effectiveness of global contextualized representations from protein language models (pLMs) in numerous downstream tasks. Nonetheless, strategies to encode the site-of-interest leveraging pLMs for per-residue prediction tasks, such as crotonylation (Kcr) prediction, remain largely uncharted. ResultsHerein, we adopt a range of approaches for utilizing pLMs by experimenting with different input sequence types (full-length protein sequence versus window sequence), assessing the implications of utilizing per-residue embedding of the site-of-interest as well as embeddings of window residues centered around it. Building upon these insights, we developed a novel residual ConvBiLSTM network designed to process window-level embeddings of the site-of-interest generated by the ProtT5-XL-UniRef50 pLM using full-length sequences as input. This model, termed T5ResConvBiLSTM, surpasses existing state-of-the-art Kcr predictors in performance across three diverse datasets. To validate our approach of utilizing full sequence-based window-level embeddings, we also delved into the interpretability of ProtT5-derived embedding tensors in two ways: firstly, by scrutinizing the attention weights obtained from the transformer’s encoder block; and secondly, by computing SHAP values for these tensors, providing a model-agnostic interpretation of the prediction results. Additionally, we enhance the latent representation of ProtT5 by incorporating two additional local representations, one derived from amino acid properties and the other from supervised embedding layer, through an intermediate fusion stacked generalization approach, using an n-mer window sequence (or, peptide/fragment). The resultant stacked model, dubbed LMCrot, exhibits a more pronounced improvement in predictive performance across the tested datasets. Availability and implementationLMCrot is publicly available at https://github.com/KCLabMTU/LMCrot.more » « less
- 
            O-linked β-N-acetylglucosamine (O-GlcNAc) is a distinct monosaccharide modification of serine (S) or threonine (T) residues of nucleocytoplasmic and mitochondrial proteins. O-GlcNAc modification (i.e., O-GlcNAcylation) is involved in the regulation of diverse cellular processes, including transcription, epigenetic modifications, and cell signaling. Despite the great progress in experimentally mapping O-GlcNAc sites, there is an unmet need to develop robust prediction tools that can effectively locate the presence of O-GlcNAc sites in protein sequences of interest. In this work, we performed a comprehensive evaluation of a framework for prediction of protein O-GlcNAc sites using embeddings from pre-trained protein language models. In particular, we compared the performance of three protein sequence-based large protein language models (pLMs), Ankh, ESM-2, and ProtT5, for prediction of O-GlcNAc sites and also evaluated various ensemble strategies to integrate embeddings from these protein language models. Upon investigation, the decision-level fusion approach that integrates the decisions of the three embedding models, which we call LM-OGlcNAc-Site, outperformed the models trained on these individual language models as well as other fusion approaches and other existing predictors in almost all of the parameters evaluated. The precise prediction of O-GlcNAc sites will facilitate the probing of O-GlcNAc site-specific functions of proteins in physiology and diseases. Moreover, these findings also indicate the effectiveness of combined uses of multiple protein language models in post-translational modification prediction and open exciting avenues for further research and exploration in other protein downstream tasks. LM-OGlcNAc-Site’s web server and source code are publicly available to the community.more » « less
- 
            Phosphorylation is one of the most important post-translational modifications and plays a pivotal role in various cellular processes. Although there exist several computational tools to predict phosphorylation sites, existing tools have not yet harnessed the knowledge distilled by pretrained protein language models. Herein, we present a novel deep learning-based approach called LMPhosSite for the general phosphorylation site prediction that integrates embeddings from the local window sequence and the contextualized embedding obtained using global (overall) protein sequence from a pretrained protein language model to improve the prediction performance. Thus, the LMPhosSite consists of two base-models: one for capturing effective local representation and the other for capturing global per-residue contextualized embedding from a pretrained protein language model. The output of these base-models is integrated using a score-level fusion approach. LMPhosSite achieves a precision, recall, Matthew's correlation coefficient, and F1-score of 38.78%, 67.12%, 0.390, and 49.15%, for the combined serine and threonine independent test data set and 34.90%, 62.03%, 0.298, and 44.67%, respectively, for the tyrosine independent test data set, which is better than the compared approaches. These results demonstrate that LMPhosSite is a robust computational tool for the prediction of the general phosphorylation sites in proteins.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
